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ABSTRACT

The change point of a function is defined to be the
point (assumed unique) that minfmizes or maximizes the
function,

Fixed and narrow "'window' estimitors are proposed and
studied for the change point of the generalized failure rate

function r(x) = —JIx where F and G are distribu-

-1
glG "F(x)]
tions with densities f and g , respectively., For a given

G and an unknown F , the change point is estimated by (1)
estimating r(x) , relaxing the ass'mption of complete
sample; and (2) minimizing the estimator of r(x) over

X E Qn with Qn a grid on (-»,») , The estimators are
shown to be consistent and their asymptotic distributions
are derived using theorems on the convergence of distribu-
tions of stochastic processes. When G 1is the uniform
distribution on [0,1] , estimation of the mode of a density
falls out as a special case; and, by virtue of (1) and (2),
the asymptotic results are shown to hold in this case under
conditions more general than assumed by Chernoff (1964) and
Venter (1967). Estimators have also been proposed when
r(x) 1is known to be U-shaped.

A computer program has been written in FORTRAN IV to
obtain estimates of the change point of density and failure
rate functions. Several numerical investigations have
indicated the superiority of a particular estimator in the

case of small samples.
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CHAPTER 1

INTRODUCTION

l. Literature Review

Estimators for the mode of a probability density function have been
considered by Chernoff [5), Parzen [12] and Venter [18]. In each case, it
has been assumed that there is a sample of n independent observations
from a distribution F , the mode of whose density we wish to estimate.
Consistency and asymptotic distribution of the estimators have been dealt
with in each of the above papers. The companion problems of estimating
probability density and failure rate functions have been considered by many
authors. See, for example, Bray, Crawford and Proschan (4], Parzen (12],
Rao [13). Estimation of the monotone generalized failure rate function
(defined in Section 3) has recently been dealt with by Barlow and van Zwet
[1,2], which subsumes the cases of estimating monotone density and failure

rate functions.

2., The Estimation Problem

Definition:

The change point of a function is the point (assumed unique) at which

the function attains its global minimum (or its global maximum).

This thesis formulates estimation of the mode of a probability density
function and of the point which minimizes a failure rate function, as a
special case of a larger class of problems viz. estimation of the change
point of the generalized failure rate function. The second generalization
is the choice of grid points for observing and/or analyzing the data.
Whereas both Chernoff and Venter assume a complete sample and use a grid

based on order statistics for analyzing the data, it is shown that the



asymptotic results are not changed by choosing wider grids - an important

fact for implementing the estimation procedure in real life.

3. Notation and Preliminaries

Let F be the unknown distribution function, with density f , from
which the sample of observations is drawn and G be a known distribution

function with density g . Let s be the left and right end points

1° %2
of the support of F .

We define two transformations ¢F(x) and OF(y) as follows:

-1
F, (y)
(3.1)  4p0) = G ;5 ey (y) = f gl 1F(u) Jdu 0<y<l.
®1
Then
dog(x) £(x) d ! ¢ lrix
(3.2) - — ;2 0 (y) -
S (e 130 I AL ¥ [ AL

when the derivatives exist.

Definition:

£(x)

r(x) = -1
8(G "F(x))

is called the generalized failure rate function.

The following two important cases are worth noting. Let

(1) G be the uniform distribution on [0,1] . Then r(x) = f(x) .
(11) G be the exponential distribution on [0,») with mean 1 . Then

r(x) = I—{‘%%;T » the failure rate function of F .

1f Fn is the empirical distribution function for F , based on a

sample of size n , the natural estimators of ¢F(x) and or(y) are given by



S
E“ \y’

(3.0 6, (x) = C_lF“(x) : c»Fnr;y> f g[s‘lrn(u)_]du i

51

> - . .
When v = a ard X.. ..., Xn are the order statistics from F

1
i-1 :
i) . (=1 - o
S e gGTF (X)X o XD where @08
Fn(n jg;f) L T R 3 7}

= %-[Generalized *otga time on o ¢l statistic)

Of :pecial interest are ¢stiiators based on grids with wider spacings
than thos: preovided by order staristics. We, therefore, define an analogue
of the emjirical distributi’m ior more general grids. Let {wi }m be a

*7)i=0

subdivisior of (- <) and define

*
(3.4) F (x) = Fn(wi,n) ViaSES<W g

Remark 3.1:
If {wi n}w becomes dense on the support of F with probability 1,
> 1i=0

it can be proved along the lines of the proof of the Glivenko-Cantelli

theorem that

(3.5) P[ sup IF:(x) - F(x)| ~ 0] il

<X <®

Note that the grid {wi }m (observer's grid) is the grid used in
*711=0

observing the data and, in general, need not be the same as the set

- . *
Q = )w (analyzer's grid) used in analyzing the data. With F
n i,n 1=0 n



=1
P (y)
.1 9 -1 %
defined in (3.4), ¢ ,(x) =G "F (x) and ¢ ,(y) = I g[G F (u)]du
Fn k. Fn 8 2

are well defined and estimate ¢F(x) and @F(y) respectively,
Within parenthesis is given the meaning of abbreviations used through-

out this thesis.

a.s. (almost sure, almost surely)
w.p.l. (with probability 1)

{1 ([a] is the largest integer less than or equal to a)

(1s defined to be)
838+ (almost sure convergence or convergence w.p.l.)
R (convergence in probability)
R (convergence in distribution)
Op(') (xn z Op(xn) if Xn/xn is bounded in probability, i.e., if
for each ¢ > 0 , there is an ME and an Ne 3
P{X | >Mx }<e V n>N_ .)
n' — ¢n - - €
. = g
op( ) (xn = op(xn) if anI/xn 0 as n+», {i,e.,, if
P{|Xn| 3_exn} +0 as n~+>> foreach € >0.)

|| (indicates end of a proof).

A final note on notation: all equations, lemmas, theorems etc. are
numbered on their respective scales. The number referring to the chapter

is dropped if the reference is made within the chapter.

4, Overview of Chapters

Some useful convergence properties of:

*
(1) a class of estimators for density functions based on Fn , and

(i1) the estimators ¢ , and ¢

) F
n n



as well as condlitions for the consistency of an estimator of the change
point of a function are given in Chapter II. These results, besides being
used in subsequent chapters, are interesting in their own right and useful
in solving allied problems. See references [1], (2]. Also glven are some
known results on the weak convergence of probability measures.

The motivation for the proposed estimators stems from (3.2). In the
derivation of asymptotic distributions, we place the following restrictions

on the observer's and analyzer's grids:

W s {wi’“}:=o

(11) -w, = op(cn'“) for ull i and ¢ >0, a >0 .

“i41,n - “i,n

The grid & is said to be "wide" for 0 < a < 1/3 and "narrow' for
1/3 <« < 1. Of special interest will be the rate at which the grid spacings
are required to converge to zero.

In Chapters III and IV, we confine ourselves to estimators based on the

¢ transformation. The value of x , not necessarily unique, which minimizes

F

[@ (x+a)-o¢ (x- a)] among all x ¢ Qn is said to estimate the
F
L n n

change point. The interval "2a" is called a window and the estimator, a
wirdow estimator. When a is fixed, the estimator, termed jized window
estimator, is considered in Chapter III and when a - 0 as n + = , the
corresponding estimator, termed narrow window estimator, is considered in
Chapter IV, Consistency and asymptotic distribution are dealt with in
each case.

Estimators derived from the ¢ transformation are considered in
Chapters V and VI. The value of x , not necessarily unique, which maximizes

* *
¢ *(F (x) + b) -9 *<F x) - b>1 among all x ¢ D is said to estimate
n g n
n n

the change point. The case of fixed b 1is considered in Chapter V and



b~+0 as n+ = 1in Chapter VI. It is interesting to note that to insure

the existence of the asymptotic distributions, if the window is fixed (narrow),
the grid Qn is required to be narrow (wide). A comparison of the two

narrow window estimators is made at the end of Chapter VI.

In conclusion, other estimators of the change point as well as a dis-
cussion of computational aspects are given in Chapter VII. Bray, Crawford
and Proschan [4] deal with the maximum likelihood estimation of a U-shaped
failure rate function and, as a by-product, estimate the change point.
Analogously, the U-shaped generalized failure rate function may be estimated
by methods similar to Barlow and van Zwet [1,2] and hence estimate the
change point. The development of the estimation problem in this thesis
presents a natural way of obtaining consistent estimates of the change point.
Some recommendations regarding the choice of the windows and the grid
Qn , and results of Monte Carlo investigations are included at the end of
Chapter VII.

A computer program has been written in FORTRAN IV to obtain the narrow
window estimates of the change point. A discussion of the program, along

with its listing, is given in the Appendix.



CHAPTER TII

SOME CONVLERGENCE THEOREMS

l. A Class of Estimators for Density Functions

Let {wi }m be a grid which becomes dense on the support of F
' 1i=0

*
w.p.1l. as n » » , We saw in Remark I.3.1 that F_(x) , defined by
n

*
Fn(x) = Fn(wi,n) Vin SR W4

tends to F(x) w.p.l. uniformly in x , where Fn(x) is the empirical
distribution function for F(x) .

To estimate f(x) , the density of F(x) , we consider a statistic of

the form:
p 3
* 1 X = ul,.*
(1.1) fn(x) L j' K( o )an(u)
where K(x) is a certain density function and h >0 as n »+ = . Such

*
estimates have been studied by Nadaraya [11] and Parzen [12] when Fn = F

Theorem 1.1:

Let the following assumptions hold:

(1.A1) K(x) 1is a function of bounded variation (with bound u)

(1.A2) f(x) 1is uniformly continuous.

0

(1.A3) Z e-Ynh < o for every positive vy .
n=1

w = o(h) for all 1 .

(1.44) wi+l,n T "i,n

Then

n°®



(1.2) P[lim sup |f:(x) - £(x)]| = o] =1,

n>® ~0<X<®o

Proof:

(-]

1 X - u
Let fn(x) =4 j- K(——h—)an(u)

-0

X - ul, *
K( T )an(u)

=<K <™ =X Lo

* 1
sup lfn(x) - fn(x)l = sup & J‘

K(x ; u)an(u)

j

IA

N 19 2]

fA

sup IF:(x) - Fn(x) |%

=w<K <o

I“n (wi+1 ,n) - Fn (wi,n)
sup o u
i

ia

* -
sup -1]-\'- J |Fn(u) - Fn(u)] |dl((£-h—"1

)i

+ 0 w.p.l. by (1.A4) and Theorem 1, [11].

From Nadaraya [11], fn(x) 85 f(x) uniformly in x . Hence

. .
fn(x) 8s8- f(x) wuniformly in x .

2. Properties of the ¢ , and ¢ , Transformations

F
n n

Theorem 2.1:

If the support of G 1is an interval, then

n

(2.1) P[|¢ *(x) - ¢F(x)| > 0] = ] for each x .
F



In addition, if the support of G 1is bounded, then

o<y <o F

(2.2) p[ sup [0 o) - 6 (0] + o] a1 .

Proof:

Since G 1is strictly increasing, G-l(y) is continuous in y ,
0 <y<1l. ByRemark I.3.1, F:(x) 838 F(x) uniformly in x and (2.1)
follows from the continuity of G-l c

1f the support of G 1is finite, by Proposition 16, p. 164, Royden [15],
G_l(y) is uniformly continuous in y , 0 <y <1 . (2.2) now follows from

Remark I.3.1. ||

The following lemma is any easy consequence of Proposition 6f£.2(1),

p. 355, Rao [14] and the Glivenko-Cantelli Theorem,

Lemma 2.1:

Let the support of F be an interval.

(2.3) 1If the support of F 1s not bounded, then
~1 -1
P |rn (y) =F ()| ~0|=1 for 0 <y <1,
(2.4) 1If the support of F 1is bounded, then

P| sup |F;1(y) - F_l(y)| -0]=1.
O<y<l

We give below conditions for the strong uniform convergence of ¢ )

F
n

to ®F(y) . Weak consistency of ¢ , is shown in Theorem (2.3) under less

F
n

stringent assumptions on the grid {w } d
i,n (=0
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The following theorem is due to Barlow and van Zwet [1].

Theorem 2.2:

Let conditions (2.Al), (2.A2) and either (2.A3) or (2.A4) and (2.A5)

be satisfied.

(2.A1)

(2.A2)

(2.A3)

(2.A4)

(2.A5)

Then

2.5)

The support of F is an interval.

* ©
Either F_ = F_ or the grid Jw becomes dense w.p.l. on
n n i,n 1=0

w
(-=,=) and ;—i‘n—j_M w.p.l. V i, for some M < =,
i-1,n

FL) » =» and FlQ) <= .

FLl) » - , Fl1) = = ,

H‘h Sy, 8

xdF(x) < o | J. g[G-lF(x)]dx <,
s
1

gG-l(-) has a continuous derivative ¢ on [0,1] .

P| sup |¢ £ - @F(y)l S0 =0 .
O<y<1 F

Theorem 2.3:

Let the following conditions be satisfied.

(2.A6)

(2.A7)

(2.A8)

G(x) has a continuous derivative g(x) 1in the interior of its
support.
The support of F 1is a finite interval.

The probability that the grid }Jw i becomes dense on [s.,s.]
i,n =0 1°72

approaches 1 as n + =,
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Then, for any € > 0

(2.6) lim P[1¢ £y) - ¢F(y)| <eg|l =1 0<y<l.
n>® Fn
Proof:
-1
&2 Pl
=1 % -
¢ L(y) - ¢F(y) = I g{G an(u)]du - I glG lF(u)]du .
Fn Sl Sl

Expanding in Taylor's series about F—l(y) ,

a1 =1 -1
(2.7) ¢ w(y) = ¢p(ly) = |F_ (y) - F "(y) g[G F(xn)}

F
n

-1
* m
where X lies between F (y) and F 1(y) :

g -1
B, @) - F o] < vy -wy ol

,n
+ [y - |

P

+ 0 , by (2.A8) and Lemma 2.1.

This proves the theorem. ll

3. A Consistency Condition

We give below a strong consistency condition for the estimator of the

change point of an arbitrary function ¥ defined on some interval [a,b] .
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Let © be the change point of Y¥(x) , i.e., 6 minimizes VY(x) ,

~

and Wn(x) estimates VY(x) . 6'l minimizes Wn(x) among all

xe §l

= m L]
n { i’“}iao

Theorem 3.1:

Assumptions:

vj.Al)
(3.A2)
(3.A3)

(3.A4)

(3.A5)

Then

(3.1)

Proof:

Wn(x) a8k ¥(x) uniformly in x ¢ [a,b] .
6 , assumed unique, minimizes V¥(x) .

en minimizes Wn(x) where x is confined to Qn

Qn is a grid on [a,b] such that w.p.l. it becomes dense in some

neighborhood of 6 .

For all & small enough a(8) > 0 where
a (8) = az(d) - al(d)
cl(é) = max {¥(x) : 8 -8 <x <6+ 6}

az(é) =min {¥(x) : a<x<08-26,8+25 <x <b},

a_‘So

For &8 arbitrary, but fixed, choose ¢ = a(§)/2 . Then

dn =
[»]

no(s) 9 for all n > n,

|‘¥n(x) -¥(x)| <« Y 5 .



By (3.A4), w.p.1. I n, >n 3 forall n>n -6|] <& for

1 1'|“’k,n

n

some k . For a <x<6-2 or 6+26<x<b,and n>n

Y (x) - ‘l’(uk ) > ¥(x) - ‘l’(wk ) - 2
n n'® e
2a,(8) - a (8) - 2

= a(§) - 2¢

= 0 L]

~

But 6 minimizes Y (x) => YV (e ) -y (» ) < 0 . Hence
n n a\'n n kn,n =

8 ~ 28 < en <8+ 25 . Since § may be arbitrarily small, it follows

that

Remark 3.1:

It is obvious that a corresponding result can be proved when the

change point is defined to be the maximizing point of V¥ .

Remark 3.2:

Let Qn be a grid determined by the order statistics from the under-
lying distribution F ; wi . = Xi where Xi is the ith order statistic
9
from F. If F 1is strictly increasing in a neighborhood of & , then

Qn becomes dense w.p.l. around 6 .

13
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4, Some Theorems on the Weak Convergence of Probability Measures

We give below some known results on weak convergence in the space of

functions with at most discontinuities of the first kind.

4,1 Weak Convergence in Df[a,b]

Let C[a,b] denote the space of continuous functions on [a,b] and D[a,b]
denote the space of functions on [a,b] that are right-continuous and have
a left-hand limit. We induce convergence in D[a,b] by Skorokhod's
Jl-topology. It is well known that C[a,b] with the supremum norm topology
is a closed subset of D[a,b] with Jl-topology.

A sequence of stochastic processes Xn with trajectories in D[a,b] a.s.
is said to converge in distribution to another process X with trajectories
in Dfa,b] a.s. if the measures Vo induced by Xn on D[a,b] converge
weakly to the measure v induced by X on D{a,b] .

Weak convergence in D{a,b] , when [a,b] is a compact interval, is

given in detail in Billingsley [3]. Following Stone [17], we extend this

*
concept to D (-»,=) ,

*
4,2 Weak Convergence in D (-» »)

Let R be a complete, separable, metric space, with metric p . We
*
denote by D (-»,») the space of all R-valued functions x(t) , == < t < = |
which have a limit from the left and are continuous from the right. Define

*
on D the topology Jl : a sequence xn(t) is said to be J -convergent

1
to x(t) 1if there exists a sequence of continuous one-to-one mappings
An(t) of the interval (-=,») onto itself such that for each N > 0

sup |An(t) -t] -0 and sup o(xn(t),x(xn(t))) +0 as n~+=, Note
-N<g<N ~N<t<N

that for continuous x(t) , xn(t) converges to x(t) in the Jl-topology if

and only if for each N > 0
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sup p(x_(t),x(t)) =0 as n-=+ o,
=N<t<N "

A stochastic process W on (-»,) 1is said to be a two-sided Wiener-
Lévy process if 1t 1s a Gaussian process with stationary independent increments
with (i) W(0) =0 (ii) E[W(t)] = 0 for |t| <= (i11) Var [W(t)] = |t] .
Further, from the law of iterated logarithm for a Wiener process,
W(t) € C*(-w,w) w.p.l., where C*(-m,w) is the space of all continuous
function on (-=,~) and hence, in particular, W(t) ¢ D*(-w,w)

From Stone [17] and problem 1, §15, Billingsley [3], we get necessary
and sufficient conditions for the weak convergence of a sequence of randonm

variables Xn(t) to X(t) .

Theorem 4.1:

The sequence Xn(t) is weakly convergent to X(t) if and only if

(4.1) the finite dimensional distributions of Xn(t) converge weakly to
the finite dimensional distributionsof X(t) as n > > for t 1in
some set everywhere dense on (-»,») ; and

(4.2) for €6 >0 and N >0

1im P sup min [p(X_(t.),X (£)) ; p(X (£),X (t,))] > e} =0,
nre t-c<t1<t2<t+c nol n 0 n'"2
c*0

-N<e, <t <N

Further, if almost all the paths of X(t) are continuous, then (4.2) may

be replaced by the following simpler condition:

(4.3) lim P sup p(xn(:l),xn(tz)) >e(=0.
n+o3c*0 |t1-t2|:;;-N£;l<t2§N

(4.2) is the condition for the sequence of probability measures {Pn}

corresponding to {Xn} to be relatively compact (Cf. Billingsley [3]).
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(4.2) is equivalent to the following two conditions, either of which may be

used to verify relative compactness of {Pn} .

(4.4) Condition: [Theorem 15.6, Billingsley [ 3]]

For each N > 0 ,
Y Y 2a
E{'Xn(t) - xn(tl)l Ixn(tz) - xn(t)| }i [B(t,) - B(t))]

for -N <t . <t<t

L £ 2 and n > 1 where vy >0, a >’ and B is a non-

decreasing continuous function on (-»,») ,

(4.5) Condition: [Theorem 2.5.4, Rao [13]]

For each N > 0 , there exist constants YN >0, CN > 0 independent

of n such that for every t] sty E [~N,N]

| |

7
llxn(tl) - Xn(t2)| N’ < chtl - t2|2 + o(l)lt1 - t2| .
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CHAPTER III

FIXED WINDOW ESTIMATORS BASED ON THE ¢ TRANSFORMATION

~

1. Tbhe Estimator xa

In this chapter, we shall be concerned with fixed window estimators
using the ¢ transformation and "a'" is the fixed window. Recall that

_ -1
0x(x) =G "F(x)

d —fx)
r) =g (0 = —HE
glG "F(x)]
op(x + a) - ¢ (x - a)
Hence 7a approximates r(x) . Define Qn as in Chapter I;
f.e., let == < wO,n < wl,n o) 1< wi,n < ..., <= be a subdivision of
-C0 nd Q = €
( ’ ) a n {wi,n}i=0
Definition:

The pseudo change point of r(x) is given by x_ » assumed unique,
winimizing [¢F(x + a) - ¢F(x - a)l]

-~ -~

xa , estimating xa , minimizes

F
n n

[¢ Jx+a) - L (x - a)}
F

where x 1s restricted to Qn

2., Consistency

When the support of G (an interval) is finite, we show in Theorem 2.1

-~

that X, is a strongly consistent estimator of X, . When the support of

G 1is infinite, it is shown in Theorem 2,2 that X, ~converges to xa in

probability.
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Theorem 2.1:

Let the following assumptions be satisfied,

(2.A1) The support of G 1s a bounded interval.
(2.A2) Qn becomes dense w.p.l. in the neighborhood of X,

(2.A3) For all & small enough, a(8) > 0 where

a (§) = a2(6) - 01(5)

01(6) = max {QF(x + a) - ¢F(x - a) : x, - 6 <x :';a + 6}

<X <x =-28,x + 28 <x < }.
- "a a = 2

a2(6) = min {@F(x + a) - ¢F(x - a): s,

Then
8 Rl
4 )
(2.1) X,
Proof:
From Theorem II.2.1, ¢ ,(x) 9. ¢F(x) uniformly in x . In Theorem
F
n

II.3.1, make the fcllowing identification:

¥(x) = ¢o(x+a) = ¢o(x - a) , ¥ (x) = ¢ ,(x+a)-¢,(x-a).

F F
n n

From Theorem II.3.1, xa > x .

Remark 2.1:

When G 1is the uniform distribution on [0,1] , r(x) = f(x) and we

get a stronger version of Theorem 1, Section 5, Chernoff [5].
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-

Convergence of x, When the Support of G is Not Finite.

Assumptions:

-

(2.A4) [¢F(x + a) - OF(X - a)] 1is continuous at X,
(2.A5) The support of G 1is an interval.

(2.A6) The probability that the set Qn becomes dense on the support of

F approaches 1 as n » = ,

Lemma 2.1:

N
(2.2) :ign [¢F:(x +a) - ¢F:(x - a>] B leglx, + a) - ogx, - a)] .

Proof:

From Theorem I1I.2.1, ¢ ,(x) f ¢F(x) for each x .

F

n
min [% alx+a)-¢ ,(x- a)] k min [Q *(x +a) - ¢ *(x - a)] by (2.A6)
xeQ F F X F F

n n n n
B i (¢o(x + a) = ¢.(x - a)]
F F
x
since

F F

(1) [¢ Lx+a)-¢ , (x- a)] £ [QF(x +a) - aF(x - a)] for all x , and
n n

-

(11) [¢F(x +a) - ¢F(x - a)] 1is continuous at X, by (2.A4), the last

step follows from Corollary 1 to Theorem 5.1, Billingsley [3]. ||

Theorem 2.2:

Under Assumptions (2.A4) - (2.A6),

®
+'9
b

(2.3) = "
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Proof:

From problem 40, p. 180, Royden [15] and by (II.2.1), ¢ x  converges

F
continuously to e w.p.l. Hence for sequence {xn} +x, n
[¢F*(xn + a) - ¢F*(xn - a)] converges continuously to [¢F(x + a) - ¢F(x - a)]
n n

w.p.l. The function ¢ , and ¢F are measurable mappings from R to R .

F
n

Hence by Theorem 5.5, Billingsley [3], letting

h (x) = ¢ 4,(x+a) -¢ ,(x-a)

F F
n n

h(x) = ¢F(x + a) - ¢F(x - a)

we get by Lemma 2.1

M Vxeq | F F X
n n

not {min [¢ L+ a) -0 L (x - a)]} +nt frin Logtx + a) - opx - 2)1)
n

P
fen, x >x_ . |

3. Asymptotic Distribution

Assumptions:

(3.A1) F(x) 1is continuous with density f£(x)
(3.A2) r(xa + a) >0 ; r(;a - a) >0 .

(3.43) g'(x)/g3(x) is bounded for x 1in the support of G (an interval).

(3.A4) [@F(x + a) - @F(x - a)] 1is differentiable at X,

-1/3

(3.45) w = op(n

“4+1,n ~ “i,n ) (.e., Q  1is a narrow grid).

It is easy to see that these assumptions, which are necessary in the

derivation of the asymptotic distribution, are sufficient to insure

consistency of X



Since X, minimizes [¢F(x + a) - ¢F(x - a)] , we have

(3.1) r(;a + a) = r(;a - a) .

Let

(3.2) h(x) = [% (x +a) - ¢ (x - a)] :
n n

A

x, minimizes hn(x) and hence minimizes

(3.3) hn(x) - hn(;a) = [¢F (x +a) - ¢F <;a + a)] - [}F x - a) - °F (;a - a)]
n

n n n

where

[ -~ -
(3.4) Yn = ; QF (x + a) - oF (xa + a)1 - [:F(x + a) - @F(xa + a)};

N c—

. {T¢F (x - a) - ¢p (xa - a). - [¢F(x -a) - ¢F(;a - 3)]

and

(3.5) us= [@F(x + a) - ®F(;a + a)l - {¢F(x - a) - ®F<;a - a)] g

-

~

Let & = x - X, - Note that x ¢ Qn . Expanding in Taylor's series,

- Fn(x + a) - Fn(;a + a) F(x + a) - F(;a + a)

n g[ -an(;(a + a)] ] g[ -IF(;a i a)}

Fn(x - a) - Fn(xa - a) F(x - a) - F(;a - a)
8[ —an(;a - a)] g[G-lF(;ca - a)]

-1
+ 0 (n "¢
p( )

21
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] oo )

r . ~
- f(;: § a) {[fn(x - a) - Fn(xa - a)] - [F(x - a) - F(xa - a)]}
+ op(n‘*a) .
F (v, - a) ]
(3.6) Y = ';—’:(i'—;:)- an(é) - ;(?:__T) Vnz(é) + Op(n !56)
where

(3.7) an(d) - [Fn(;a +a+ 6) - Fn(;a + a)} - [F(;a + a+ 6) - F(;a + a)}

and
(3.8) Vnz(é) = [Fn(;a - a+ 6) - Fn(;a - a)] - [F(;a - a+ 6) - F(;a - a)? .
Expanding u by Taylor's series, the first term about (;a + a) , the

second term about (xa - a) and noting that r(xa + a) = r(xa - a) , we

see that
(3.9) u = BEe 5 op(53)
where
(3.10) Y= r'(;a + a) - r'(;a - a).
2 t(x + a) r(; - a)
311 L h GO - (x ) - f(;: >y v ) - f(;: = v_,(8)

#1562 + op(n‘*s) .



We note that

(3.12) E[an(G)] = E[Vnz(é)] =0
f ; +a)ls]
(3.13) Var [V ., (3)] = —iii———4l——-+ 0 (n-l-dz)
nl P
f(; - a)Iéi
sowa s -1,.2
(3.14) Var [Vnz(G)] = + Op(n §%) .

The correlation coefficient between an(é) and Vnz(d) is given by

Cov [an(ﬁ).Vnz(G)]

(3.15) Pip = - : ~ -5 = OP(S)-
YVar [an(e)]-Var [Vnz(é)]
Since ; minimizes h (x) - h (; ) . S = ; - ; minimizes (3.11).
a n n'"a a a
Let

(3.16) § = )\t
(3.17) r = r(xa + a) = r(xa - a)

2 -%
(3.18) W (t) = | AR ( O ) :

f(xa + a) f(xa - a)

Then ¢t = A-ld minimizes

iy -%
1

23

2
(3.19)  z_(6) =W _(6) + |2 [— e 2262 4 0 (n“’e)].
n f( 5 " a) - P

xa + a‘ f(x
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Choose A 1in (3.19) so that the coefficient of tz is one, i.e.,
2 -k
i A: - 1 3 —— 1 XZY -1.
f(xa + a) f(xa - a)

. 1/3
(3.20) .'. ) = "‘2 1 e )
£

ny

) -1 -~
From (3.19), t =) (xa - xa) minimizes

2 /6t

-1
(3.21) Zn(t) = Wn(t) +t + Op(n )

Reduction to a Problem in Stochastic Processes

Lemma 3.1:

Wn(t) is asymptotically normal with mean 0 and variance |t| , for

all ¢t .

Proof:

From (3.18) and (3.12), wn(O) = 0 and E[Wn(t)] = 0 for all t .

/

Since P12 ® Ol)(n-1 3t), an(Xt) and Vnz(kt) are asymptotically uncorrelated,

. Var [W (¢)] = le| + op(n'1/3:) .

From DeMoivre-Laplace Theorem

(%)J’vnl(x:) D N(O,f(;(a + a)ltl)

=% 3
(%) vV ,(At) R N(O,f(xa - a)lcl)
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and since an(At) and Vnz(xt) are asymptotically uncorrelated, we have

W (t) 2w - N(,|el) . |]

Remark 3.1:

After a tedious calculation, it can be shown that for any collection
of ti > tl < t2 Soeee 2ty with |ti| <= for 1<1i<k, the joint dis-
tribution of [wn(tl),wn(tz), 00 qn Wn(tk)] converges to the multivariate

normal distribution with mean 0 and variance-covariance matrix given by

(5 (t ) min (l:il,lzjl))

1'%y
where
1 if ¢ and d are of the same sign

§(c,d) = ) .

0 otherwise

Witk tae above results, the main result of this section, Theorem 3.2,
can be proved by arguments identical to those given in Sethuraman [16],

pp. 112-117. We shall give an alternate proof using Theorem I1.4.1.

Lemma 3.2:

For each Kk > 0 and for all =N :-tl 5_:2

> 0 independenrt of n , tl , tz such that

< N, there exists a constant
CN
'2

4
(3.22) E{[Wn(tz) - wn(cl)] }icultz -5l + o(l)lt2 = tll

Proof:

Let ¢ =—'——;c3-—.———;c1=c2+c3. Then
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\ =k
wn(t) = (; cl) [czvnl(é) - c3vn2(6)] :

-4
A
W(e,) - W (t) = (n °1) (eyV 1 (8,) = V(6D = cylV ,(8,) =V, (6D} .
. 4 4 4
From the elementary inequality (x +y) < 8x + 8y

-ZA-Z

4 2§ 4 4
(3.23) E{[wn(tz) - (e }i 872 % {czE[an(Gz) - v (6]

4 4
+ c3E[Vn2(62) - Vnz(dl)] } 5

If f 1is the value of the density at the mode, we note, after expanding in

Taylor's series, that

F(x, +a+6,)~ F(x, +a+8) <5, -5)

F(;a-a+62)-F(;¢a-a+61)_<_f-(62—6).

1

After a tedious calculation, we note that

2 4 2 2 f

a E{[Vni(éz) v (6] } <1886, - 62+ £ 6, -6, 1-1,2
and hence

-2 -2 2f4 4. & 4
(3.24) 8c1 A n {cZE[an(Gz) - an(dl)] + CSE[an(GZ) - Vnz(él)] }
2 D
< CN(t2 - tl) + n2/3 (t:2 - tl)

where

2f2(c4 " c“

C,, = lb4c 2 3

N 1 ) >0

D= SCI%f(cg + cg) >0.
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From (3.23) and (3.24)
E{[wn(tz) - wn(tl)la} < CNlt2 - t1|2 + o(l)lt2 - :ll

By Remark 3.1 and Lemma 3.2, conditions (4.1) and (4.5) of Theorem

I1.4.1 are satisfied for the sequence {Wn(t)} and hence

W_(t) R w(e)

t2 4+ 0 (n 1) B ¢? .
P
Hence by an application of Slutsky's Theorem [Cf. Cramer [6], p. 254], we

get

Theorem 3.1:

The distribution of Wn(t) + t2 + Op(n-ll6

t) converges to the distribu-
tion of W(t) + t:2 where W(t) 1is a two-sided Wiener-Lévy process with

mean 0 , variance 1 per unit t and W(0) = 0 .

The Asymptotic Distribution of X,

Theorem 3.2:

4r2(; + a)

1 ] 1 c
(3.25) 3 [ + = ] (x, - x,)

ny f(;{a + a) f(xa - a)

is asymptotically distributed as the value of t which minimizes the
stochastic process 2Z(t) = W(t) + tz, where W(t) 1s a two-sided Wiener-

Lévy process with mean 0 and variance 1 per unit t and W(0) =0 .

Proof:

*
Let z(t) ¢ C (-=,») and k(z) be the value of t that minimizes

z(t) .
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1
(1)  W(t) = 0f2]t]| loglog |t]]® as |e| » = (Cf. Chernoff [5]) and

hence

w(t) + tz = t2-

Therefore, k{Z(t)] is bounded w.p.l.

(11) Since the distribution of 2(t) has a nonzero density on (-=,v)
for eac" t , Z(t) has a unique minimum w.p.1l.

(1ii) Since all *%: trajectories of W(t) are in C*(-w,m) w.p.1l.,
the subset in C*(~w,w) on which k is continuous has probability

1 for the process Z(t)

From Corollary 1 to Theorem 5.1, Billingsley [3], we see that

kz ()] % k(z(0)] .

e

Further, we need to impose the following restriction on {wi n}

i=0
= -1
Defining 61 wi,n - X since t X 7§ we have
w -w
i+l,n i
s 2 —t—— =
b1~ & X i=0.1,
P
+ 0 uniformly in i
if
= -1/3 = 2
wi+l,n wi,n op(n ) for 1 =0,1,2, ...

-~ ~

Hence t = A_l(xa - xa) is asymptotically distributed as the random variable

hich minimizes W(E) + E° . [

Remark 3,.2:

Let + be the density of the random variable which minimizes Z(t)

Chernoff [5] proves that
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y(t) = %Ux(tz.t)ux(tz,-t)

where U(-,* is the solution of the heat equation

%Uxx = -UZ

subject to the boundary conditions (i) U(x,z) = 1 for x i_zz and
(ii) U(x,z) 0 as x + = ., Here Ux denotes the partial derivative of

U(x,z) with respect to x .

Remark 3.3:

n—1/3

If = C , asymptotically one looks at the stochastic

wi+1,n - wi,n

prccess 2(t) only at certain fixed points ti with spacings given by

Y2/3C

i+l i 1/3
4:2 _ 1 + _ 1
f(xa + a) f(xa - a)

and to > == . {s arbitrary.

Remark 3.4:

When G is the uniform distribution on [0,1] , r(x) = f(x) and

- 1/3
Sf(xa + a)

2
ny

A =

which is the same as Equation (3.10), Chernoff [5].
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CHAPTER IV

NARROW WINDOW ESTIMATORS BASED ON THE ¢ TRANSFORMATION

-

1. The Estimator xa
n

Since ¢ ,(x) st 4 _(x) , a natural estimator for r(x) 1is given by
F

n

¢F*(x +a) - ¢F*(x -a)
° n n
(1.1) rn(x) = zan

where a +0 as n -+ » ., We shall refer to Zan as a narrov window.

Definition:

-~

The change point X, s assumed unique, minimizes r(x)

~ -

X, the estimator of X, minimizes rn(x) among all «x € Qn
T.

2. Strong Consistency

If in (I1.1.1)

by lyl <1
K(y) =
0 lyl > 1
we get
* *
(2.1) oo - ot " T T D)
* n 2h

Let 6 > 0 and



al(d) = max{r(x) : ;o -6 <x 5-;0 + 6}
a,(8) =min{r(x) ts) <x_<_:.<o - 25, ;co+26 = XS 52}
a (8) = al(d)/az(é) .

Theorem 2.1:

Suppose that the following assumptions hold.

(2.A1) F has a uniformly continuous density f .

®  -yna

(2.42) z e converges for every positive y .
n=1l
* =Y
(2.A3) Either F = F_ or the grid {w } is chosen such that
n n i,n
i=0
LI LG

(2.A4) The grid Qn becomes dense w,p.l. in a neighborhood of X,

(2.A5) For all § small enough, a(8) < 1.
Then

(2.2) X -7 x

Proof:

The proof is similar to the proof of Theorem 1, Venter {18). For ¢

!
arbitrary, but satisfying (2.A5), d n° 9 for n > no 3 lwkn,n xo, < §

for some sequence {kn} w.p.l., by (2.A4). Let
2 " “ ,n
n

-1 * -1 %
G Fn(x + an) -G Fn(x - an)
(2.3) hn(x) = Zan

31
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Then

* *
e Fn(x + an) - Fn(x - an) . 1
n 2an S[G-lﬂn(x)]

where
X = a ) ( ) F ( )
F < X < X+ a .
ﬂ( n - Bn . ¢ § n

a.s.
-

Since a - 0 , by Remark I.3.1, Bn(x) F(x) wuniformly in x .

* *
h ()= Fn(en e an) - Fn(en - an) . 1 :
n' n 2a -1
n g|G Bn(en)

-~

* *
where F (6 - a ) <B (8 ) <F (8 +a ). Choose x 3 x <x_ - 35§ or

n' n n“ = " n n - n'n n -0
x 2 x + 36§ . Then w.p.l., d nozn, independent of x such that for all
n>n

1

-

(2.4) F(x, - §) <8(8) < Flx_+¢)
and
(2.5) either Bn(x) :»F(;o - §) or B (x) :_F(;o +28) .

h E * £r! {F-l !
e n(x) Fn(x + an) - Fn(x - an) . F sn(en) . r Bn(x)J

" TF - F* - - Lo B
hn(en) Fn(en + an) Fn(en an) f[F lB (x) rLF 13 (3 )1
n nn )

Assumptions (2.Al), (2.A2) and (2.A3) imply, by Theorem II.1l.1 when

* *
F # F_ and from Nadaraya [11]) when F_ = F_, that
n n n n

* *
Fn(x + an) - Fn(x -a)
2a

n

a‘s L]

(2.7) f£(x) ,



uniformly in x . Hence w.p.l., J n, 2 Ny o independent of x , 3 for

X and n > n

any two points xl » X, 2

x % -1
F (x, +a) -F (x, -a) f[F B (x )]
(2.8) : 1 n : 1 n~ - n' 2 > a(6) .
Fn(x2 + an) - Fn(x2 - an) f[F Bn(xlﬂ

% *
Choose n > n, and let 6 =6 , . From (2.4) and (2.5), for n>n

2
n
-1
r[l-' Bn(X)J a2(<5) 1
(2.9) ;T%'IB (e)} :-al(d) =3 w.p.1l.
n

Hence, from (2.6), (2.8) and (2.9), we see that

h (x)
n a(8)
hn(e) > = (8) =1 w.p.1l.

Therefore x minimizes h (x) => h (x )/h (8) < 1.
a n n\"a | 'n —

-
.

e e X =36 <x  <x + 3§ w.p.l.
o an o

Since & may be made arbitrarily small, it follows that

»
¢

3. Asymptotic Distributions

Assumptions:

(3.A1) F(x) has a uniformly continuous density f(x) .

(3.A2) r{x_ ) > 0 and r(x) fis thrice differentiable in a neighborhood of
(3.A3) g'(x)/g3(x) is bounded for x 1in the support of G .

(3.A4) a_ = Cn~ for some C >0 and 1/8 <o < 1/5. Note that (2.A2)

requires a to be less than Y% .

33
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( _ 1—2&)
3 .
(3.A5) w1+1,n - wi,n op n , 1.e., Qn is a wide grid. Let

Qn also satisfy (2.A4).

We shall see, in the sequel, that the bounds on a arise naturally and
that similar results can be obtained for 0 < a < 1/8 . Methods used in
this section are similar to those in Section I1I1.3 and hence proofs are

given only at places where they seem to be necessary. Assumptions (3.Al) -
(3.A5) insure strong consistency of X, -
n

Since x minimizes r(x) , we have

(3.1) r'(xo) =0 .

Let

(3.2) hn(x) = dp (x + an) - dp (x - an)
n n

(3.3) Y'1 = { L¢Fn(x + an) - ol_.n(xo + a_ )] - [@F(x + an) - oF(xo + an)“

[~ S -
- { L‘rn(“ - ay) - °Fn( *o ~ an)] - [°r(" -8y - og(x, - an)”
(3.4) us= [¢P(x + an) - ¢F(;° + an)] - [%.(x - an) - ¢F(;o - an)]

and

o x-x ,xefl .
o] n

x, rinimizes hn(x) and hence minimizes
n

b (x) - hn(;o) =Y +u.

-

Expanding in Taylor's series, Yn as in Section III.3 and u about X,

we see that



-~

1

Y

-

-~

(3.5)

(3.6)

r(‘ ) i - ] ’

= [Fn(x - an) - Fn(;o - an)] + [F(x - an) - F(x - a ) '

+0 (n-%-a + n-%'a -5%)
p n

u=a r"(x )62 +0 (n-:’.53 - n-336) .
n o p

Therefore § = (x - xo) minimizes

3.7)

where

(3.8)

Let

(3.9)

< ox(x)
hu(x) - hn(xo) = ;
o

.vn(G) + anr"(;o)Sz

. <l
+0 (076 + 0 ha 5% 4 6%+ sa))
p n n n

V() = {[F (x +a) - Fn(;o + an)] - [F(x +a) - F(;o + an)lz

n
t Fn(x - an) - Fn(xo - an)j - rF(x - an) - F(;o - an)}: .

-6 = At

] .
n " S[G—IF(; + a )]l[F“(x * an) - Fn(xo g an)J - [F(X + an) - F(xo + an)
o n/l

4 1

35

?
Jf

} {[F (< - a ) -F (xo - an)] - [F(x - an) - F(;o - a )}f
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-k
(3.10) W (e) = [-zn—* f(xo)] RO

- 1% £(x
Multiplying (3.8) by [%} f(xo)] g (xo) -a

and noting that a = Cn ~ , we

)
1

see that t = A 6§ minimizes

—%_f(;o) 2 & -a_2

z(x,)

2 -
(3.11) 2z (t) =~ W () + [T £(x, )}

Choose A such that the coefficient of tz in (3.11) is one, i.e.,

[% f(;o)]“’ :::03 Ven(x Jont - 1

Hence
1-2a

Gy a = () ) )

1-2a
Therefore, § = Op(n 3 t) . From (3.11) and (3.12), t = A-l(; - ;0)

ninimizes

( _ 8a-1 )
(3.13) Z_(6) = W (6) + 2 + o\n Sy

From (3.10),

(3.14) Hn(O) = 0 and E[wn(t)] = ( for all ¢ .
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By a straightforward but tedious calculation it can be shown that (Cf. Venter

(18]

% X *
(3.15) Cov {"n“)'"n"‘ )} + Y4{min(|t],2B) + min(|t |,2B) - min(]t - ¢t |,2B}

where
n
(3.16) B = lim T -
nr-«
In particular,
(3.17) Var (W (t)] + min (|t],28B) .

Note that for a > 1/5 , B =0 .

Reduction to a Problem in Stochastic Processes

Hence for each ¢ , Wn(c) is asymptotically distributed as a normal
random variable with mean O and variance given by (3.17). By arguments
similar to those in Chapter III, we see that Wn(t) is asymptotically
distributed as W(t) , a Gaussian process with mean 0 and covariance function
given by (3.15) ari for a > 1/8 , by a simple extension of Slutsky's Theorem

for processes,

z_(c) D 2() =w(e) + 2.

The Asymptotic Distribution of Xy
n

Theorenm 3.1:

The random variable
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1-2a

(3.18) 2—1/3Cz/3f1/3(;o)r-2/3(;o)r..2/3(;0)n’—3"(;a _ ;o)
n

is asymptotically distributed as the variable t which minimizes

Z(t) = W(t) + tz where

(1) for a = 1/5 , W(t) 1is a Gaussian process with W(0) = 0 ,
E[W(t)] = 0 for all t and covariance function given by the
limit in (3.15); and

(i1) for 1/8 <a < 1/5 , W(t) 1is a two-sided Wiener-Lévy process

with W(0) = 0 , E[{W(t)] = 0 for all t and variance 1 per

unit ¢ .

The grid Qu has to satisfy (3.A5), viz.

- 1-2a
- w = o\n J i=20,1
P ’ 1Ly o

(3.19)

Proof:

By virtue of preceding arguments, it is left to show that (3.19) has

w - W
- i+1’nk i,n » in order to look at all

to be satisfied. Since ti+l - ti

the points of the process 2Z(t) , asymptotically, we need

( A L-_Z&) ( _ l—Za)
3 3
“t#41,n ~ “1,n T %" TN B R L , we look at
“541,n - “i.n
Z(t) only at certain fixed intervals given by lim 2 A <= and for a

n-r«

grid whose spacings are even wider, lim P[ti+1 e Ml =1 V M| <=.]]

n-o-«e
Remark 3.1:

If A= Cf(xo) and G the uniform distribution on [0,1] , Theorem 3.1

yields Theorems 3a and 3b of Venter [18].
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Remark 3.2:

Theorem 3.1 could have been derived by the following intuitive approach

using Theorem III,3.2.

z bp(x+a) - ¢ (x-a)
Since X, minimizes 72 , it minimizes r(x) as
n

-~ -~

n+»; i,e., x > x_ . Expanding the terms in A-l in Taylor's series
a o

about x >
a

1/3

A=

L +
njr{x + a - rfx - a a n a n
an n an n n n

1-20
1. 2-1/3.C2/3f1/3(;o)r-Z/s(; )r.,2/3(;co)n 3 140w

0

- ~

+ Normalizing constant for (xa - xo) in Theorem 3.1.
n
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CHAPTER V

FIXED WINDOW ESTIMATORS BASED ON THE ¢ TRANSFORMATION

-~

1. The Estimator xb

In this chapter, we shall be concerned with fixed window estimators

using the ¢ transformation and '"2b" is a fixed window.

F-1()') F-l(y)
(1.1) o () = I SIG_IF(U)]du = r(lu) dF(u)
1 1
-1
1 _ d _ 8l F(x)]
1.2) r(x) dy <I>F(y) y=F(x) f(x)
*—l
F (y)
- *
(1.3) @F*(y) = J‘ g[G 1Fn(u):]du .
n Sl
Definition:

X s assumed unique, is said to be the pseudo change point of r(x)

1f it maximizes [V (F(x) +b) - $.(F(x) - b)] . Let y, = F(xb) .

xb is an estimator of xb if it maximizes

¢ (F*(x) + b) -9 (F*(x) - b) among all x e D Then o= F*(A )
F*' n F* n g “n ° b n\%p
n n

estimates Yy

Remark 1l.1:

* © ~
Define the set An = {F“(wi’n)}i-o . Then, b maximizes

[QF*(y + b) - aF*(y - b)] among all vy ¢ I\n and let “ n be a corresponding
n n

-~

- *
grid point such that Yy ™ Fn(wk n) . Then X, is defined to be w

k,n °



-~

Further, if F 1is continuous at Xy and Qn becomes dense w.p.l. in a

neighborhood of Xy it is easy to see that An becomes dense in a

neighborhood of Yy -

2. Consistency

Theorem 2.1:

Suppose that the following assumptions hold.

~

(2.A1) In the neighborhood of Xy

dense w.p.1l.

(2.A2) The assumptions in Theorem I1I1.2.2 hold; i.e.,

a.s.
L) s
F
n

(2.A3) For 2ll & small enough, a(8) > 0 where

¢F(y) uniformly for 0 <y <1.

a (6) = a;(8) - a,(8)
al(é) = niin {¢F(y + b) - @F(y -b): ;b -8 <y < ;b + 6}
aZ(G) = max {@F(y +b) - ¢F(y -b) :0 <y i-;b - 25,
y, + 28 <y < 1} :
Then
(2.1) g, 3%y, -

(2.2) X,

F(x) 1is continuous and Qn becomes

41
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Proof:

By Remark (1.1), An becomes dense w.p.l. in the neighborhood of Yy The

theorem now follows from Theorem 11.3.1 and Remark II.3.1. |

Theorem 2,2:

Let the following assumptions be satisfied.

(2.A4) The assumptions in Theorem II.2.3 hold; i.e., ¢ ,(y) £ ¢F(y)

F
for 0 <y S k&

(2.A5) The probability that Qn becomes dense on (-~,») approaches 1

as n * =,

Then

o >
+9

(2.3)

Proof:

By Theorem II,2.J, (2.A4) implies weak consistency of ¢ _ . The rest

F
n

of the proof is similar to the arguments involved in proving Theorem III.2.2.

[

3. Asymptotic Distribution

Assumptions:

(3.A1) Let (2.A4) hold.
-1° -1, .
(3.A2) For x 1in the interval |F (yb - b) , F (yb + b) and in a

neighborhood of F-l(;b - b) and F-l(;b + b)',

(1) r(x) > 0 and continuously differentiable, and

(ii) f(x) and f'(x)/f3(x) are bounded.

Either (2.A4) (g(x) is continuous in x) or (i) and (ii) imply
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(111) gc'lr(x) is bounded.

(3.A3) w -w = op(n-l/3

in ) , i.e., Qn is a narrow grid.

i+l,n

-~

(3.A1) and (3.A3) guarantee consistency of Xy .

Since b maximizes [¢F(y + b)) - @F(y - b)] we have

(3.1) = -t -2 (say) .
r[F (v, + b)} r{F (v, - b)}
Let
(3.2) h () = [¢F (y+1b) = o (y - b)] :
n n

-

28 naximizes hn(y) among all y € An and hence maximizes

3.3 h () -h(y) - [@F (y + ) = 0 (y - b)} - [@F (v, + ) - o (v, - b)] :
n n n n

Let
(3.4) §=y- ;b

(3.5) ny =y, th s Ny, =y, - b

(3.6) g = F ) g = F ()
(3.7) a; = [on;] ; a, = [nn,]

(3.8) by = [n(n, + &)1 5 by = [l + 8)] -

Xl,Xz, ol I are the order statistics from F .



L~

b,-1
b a 1 -1
(3.9) ¢F( 1) - o (——1—) - ] ele U/m) g - Fix)1 + op(n'la) .

: \n = f(xj) 341
Proof
b a bl-l
(3.100 o |-L)- e (nl)= T oelc G/mrx,,, - x).
F\n F\n = j+l h|
n n j-al
S| -1
XJ+1 - XJ = F F(Xj+l) - F F(Xj)
(3.11)
F(X,, ,) - F(X,) AR AS)
'§+1 i . N [
h| f (cj)
-1
where cj F (ej) and F(Xj) :.ej —-F(Xj+1)'
2 2 -2
E{[F(Xj+l) - F(Xj)] }3 (n + l)(n + 2) = 0(“ ) .
Further, the fourth moment of [F(Xj+l) - F(Xj)] is given by
4 24 "
E{[F(Xj+l) - P } TG T DGrDGmF Ny o)
so that Var {[F(X ) - F(X )]2} +0 as n » = , Therefore
j+l h|

(3.12) [FX +l) - F(X

2 -2
j )] Op(n ) .

3

By assumption, g[G—l(j/n)] R f'(cj)/f3(cj) are bounded for j ¢ [al’bl - 11 .

Therefore

(¢,) L -
(F(X,,) - Fx)1P 520 (@) as = 0 (a7h) .
Tk o) g
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Lemma 3.1 follows from (3.11), (3.12) and (3.13). ||

Lemma 3.2:

(bl) HY 1 1 5
(3.16) o\ -\ 7/ =7 1 (Yj+1'n+1)+?
n n j=a,
r'(g,) iy
- — 1 6240 (a7 %)
2r f(El)

4
where {Yi}r 1 are independent and exponentially distributed random variables
i=1

1
with mean 4 1 and r = r(El) = r(&z) :

Proof:

F(X,) and F(X,,,) are respectively the jth and (j + 1)th order

b j+1
statistic from the uniform distribution on [0,1] . Let Sj = % Yi . Then
i=1
a,s
3 ) h $+° . .
E(Xj) Sj/Sn+l . By Strong Law of Large Numbers, Sn+1 1 From (3.9)

A o\ B j a f(xj) j+1
b,-1
- % G-l n Y 1
y=a f(xj) j¥1 n + 1
1
b,-1
1 -1
g6 "(4/m)] _ 1 -1
+ jgal f(xj) —Fo] + Op(n 8) .

Define Zj by F(Zj j

fact that f 1is bounded away from zero, we have

) = Fn(x ) = j/n . By Kolmogorov's Theorem and the

sup x, - z,| = Op(n_%).

a g1 .3



-1 0 £'( )
X)) = f (@) -5 (x, -2)
J h| 2 h| h/
£7(z,)
]
where ;j lies between Xj and Zj . By Assumption (3.A2), f'(gj)/fz(cj)
is bounded and hence
-1 =1 ]
f (Xj) f (Zj) + Op(n )
b -1 b-1 [ -1 1
=1 3
(3.16) % ﬂjﬁ-—ﬁ-/ﬂ)—l(y e ),% E’L(‘_F(_Z_.ﬁ-_(\. o1 )
: £ £(X.) j#1  n+ 1 ‘ £(Z,) j¥1  n 4+ 1,
j=a, j i=a, j
L
+0 (n %).
P
- - - ]
Ire =, b1 gle e
Ggan 7 e _Gml L ¢ L i, L 4o (nis)
) £(X,) n+l1l & £(2)) n+1 p
I=a, h] J=a, b
. g . L 1
Expanding in Taylor's series, e = ) about Ny s we get
3 c[F "(j/n)]
(3.18) 2 =I.'(5, ) - > +O‘r‘1‘—r}l
] it r"(il)f(ﬁl)
Let
bl-l 1
A = S5 Y = (i - a.)
n n b j¥1 n + 1 J 1
J=a
1
E(An) =0
. bl—l (j - al)_ ! bl_l ,
Var(A ) = = ) =7 (j-apn°
n 2] e 2 4 .- 1
n j=a, (n+1) n j=a
1
1 = L
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Therefore

4,,3/2

(3.19) An = Op(n ) .

Note that r'(&l)/rz(al)f(gl) is bounded, by (3.A2), and that in (3.16) and
(3.17), the terms with (j/n - nl) raised to a power greater than 1 are
of a still smaller order of n .

From (3.15) - (3.17)

b a\ P11 by -1
S (V4 B N A A s e
Fln Fln j=a, r(zj) j¥1 n+1 j=a, r(zj) n+ 1
+ Op(n‘%d)
b,-1 b, -1
3=a, r(€1) j¥1 n+ 1 jzal r(&l) n+ 1
b, -1
17 (3/n - n)rc' () _
" n i 1 z 2 . L +o (n LS5) by (3.18) and (3.19)
f=a;  T(EDECE) P
b, -1
1 r' (g,)
.lz (Y __1__)+_<S__ 1 62+0(n'l”55).||
" may Jen e S 2r2f(£1) P

Replacing subscripts 1 by 2 in Lemmas 3.1 and 3.2, we get

Lemma 3.3:
b.-1
b a 2
2 22 .1 1),
(3.20) ¢F(n)-¢F(n)=rz (Yj+l n+l)+r
n n j=a2
t'(&z) 9
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Remark 3.1:

As n + > | [ny]/n +y uniformly in y and hence finding ¥y, maximizing

hn(y) - hn(yb) is equivalent to the problem of finding & = § which

)= ) [

Reduction to a Problem in Stochastic Processes

maximizes

(%), (2)]

n n

From Lemmas 3.2 and 3.3

oo [ 21

1 1 [FTED )], Y
- -t- vn(G) - [ §° + Op(n 6)

(2)-, (2)]

n

2| £ T £(E)
where
(3.22) v (6) =V (8) +V_,(8)
by~1 by-1
(3.23)  V_,(8) = ] (Yj+1 - ;—557f) PV ,(0) = ] (-Yj+l + ;—%—I).
j=a; j=a
Let
(3.24) § = vt
(3.25) W_(t) = (%})-%vn(c) . |

~

Then t = v-15 maximizes
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Q_ =3 1 t'(El) r'(gz) 2 2 ;5
(3.26) Zp(t) = Wn(t) - (n) 'ZrZ[f(gl) - f(gz) viet o+ op(é ) .

Choose v such that the coefficient of- (-t2) in (3.26) is one, i.e.

(g\_,)-lz N LY ) r'(g,) .
n/ L. 2| £(6)  f(g,) '

Therefore

~-1/3
g2 1

(r' €) (52))2
n -
£(6) ~ E(E)

1/3t) . Hence t = v-l(yb - ;b) maximizes

(3.27) v =

Hence § = Op(n-

2 /6t) )

(3.28) 2 (8) =W _(t) - 2+ Op(n-l

Lemma 3.4:

Wn(t) is asymptotically normal with mean O and variance |t| ,

for all ¢t .

Proof:

From (3.25), (3.22) and (3.23), wn(O) = 0 and E[Wn(t)] = 0 for all t .

By the Lindberg-Lévy Theorem (Cf. Fisz (8], p. 197)
2

-y
(—2;"-) v_ao ® N(O, J—ti)

2

-3
(2™ 00 2up, L2L)

Since an(kt) and Vnz(kt) are asymptoticallv independent, we have
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W (t) D N(O, |t]) for all t .

Remark 3.2:

For any collection of t el h tk » 1t can be shown that the joint

l’
distribution of [wn(:l), aoof Wn(tk)] converges to the multivariate normal

distribution with mean 0 and variance-covariance matrix given by

(5(t )min(lti|,|tj|))

1°%y

where

1 1f ¢ and d ace of the same sign
8(c,d) =

0 otherwise.

By limiting arguements similar to Section III.3 or Section 5, Chapter 2,

Rao [13], we get

Theorem 3.1:

2 /

The distribution of Zn(t) = Wn(t) -t7 4+ Op(n.l 6t) converges to the
distribution of W(t) - tz where W(t) 1is a two-sided Wiener-Lévy process

with mean O and variance 1 per unit t and W(0) =0 .

The Asymptotic Distributions of s and X,

Treorem 3.2:

The asymptotic distributions of

-~ ~

—l(yb -y,

(3.29) v

(3.30) x'l(ib - ;b)

have density y(t) where ¢ 1is the density of the value of t maximizing
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2

2(t) = wW(e) - t°, w(t) is a two-sided Wiener-Lévy process with W(0) = 0,

E[W(t)] = 0 and Var [W(t)] = |t| , for all t where

1/3
81'2

! | 2
n(r (6) T (52))
) " £,

\

f(x,)

VvV =

(3.31) A=

Proof:

Since t = v-l(yb - yb) naximizes Zn(t) and by Theorem 3.1,

Zn(t) R Z(t) , we only have to show that the assumption on grid points,
1/

3) , 18 necessary.

viz. Yela " mi,n - op(n

Since t = v-l(y - yb) with y e An S

)

i,n

- I'.rl(miﬂun) - Fn(w
i v

-1/3

L4 0 if w -w = op(n ) .

i+l,n i,n

Proof of (3.30) and (3.31):

Ty T ;b - Fn(;%) - F("b)
= £ (%) - F(x,) + (x, - %) €@

where [ lies between x.D and xb .

-

e (g = 1)@ = (5, - ) +o @™

by Kolmogorov's Theorem. Since, X, L Xy and f(x) 1is continuous at



Xy o £(c) g f(xb) by Corollary 2 to Thcorem 5.1, Billingsley [3). Hence,

by Slutsky's Theorem (Cf., Cramer (6], p. 254), we get
-1 . - -1
v f(xb)(xb - xb) ) v 6,

Let )\ = v/f(xb) and the theorem follows. ||

An Alternate Definition of the Pscudo Change Point

The pseudo change point may be alternately defined as

-1 -1/
*_r (v, +b) +F (v, - ®)
2 F
Let An be any set in [0,1) and containing the points O and 1 .

where Yy maximizes ! _(y + b) - @F(y -b) .

-1
] 3 - * -~
Then X, = Fn (yb) is said to estimate Xy when b maximizes

F

[@ £y +b) -0 (y - b)] ,» where y 1is restricted to An
n B

Under regularity conditions similar to those in Section 2, it can be

-~ ‘* - *
shown that Yy and x, are consistent estimator of Yb and Xy respect-

ively. Further, it can be shown that

-1
1 1 Slck %
l}’(f(&l) * f(sz))] v ("b - xb)

has density y(t) where v and ¢ are defined in Theorem 3.2.

Remark 3.3:

F'l(;vb +b) + F-l(;’b -b) .

If b satisfies = X and
2 a

-1/ -1
F (yb+b)-F (yb-b) '
am= 2 , where a and x, are as defined in Chapter

- a

III, then it is clear that X and X, are asvmptotically equivalent.
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| CHAPTER VI

NARROW WINDOW ESTIMATORS BASED ON THE ¢ TRANSFORMATION

1. The Estimator "'b
B

A natural window estimator of 1/r(x) , using the ¢ transformation is

given by

) ,(r:(x) +b ) -0 *(F:(x) - b )
1 ru F'n

rh (x) 2y

(1.1)

where an is a narrow window.

Definition:

X, is said to be the change point 1f it maximizes 1l/r(x) . Let

Yo = F(;o) .

-~

- *
xbn is said to estimate X, 1f it maximizes llrn(x) among X € Qn ~

~ * . *
Let yb - Fn(% ) and An = {Fn(wi,n)} .
o n i=0
We shall obtain the analog of the results in Chapter IV and this will

enable us to obtain the asymptotic efficiency of X, relative to X, -
n n

2. Strong Consistency

Let 6§ > 0 and
u(G)-un{L';-6<x<;+6}
1 r(x) ° "o -7 ="

1 Ny - -
02(6)-m{r(x).sl<x_<_x°-26,x°+261x<sz}

a (8) = al(é)/az(é) 3



Theorem 2.1:

If

x @
(2.A1) either F = F or the grid Jw becomes dense w.p.l. on the
n n i,n {=0

a,s. .,
support of F as n and sup ’W1+1,n - wi.nl £

i
(2.A2) Q“ becomes dense w.p.l. in the neighborhood of Xy 5
(2.A3) the support of F is an interval and F has a uniformly continuous

density f ; and

(2.A4) for all § small enough, a(§) > 1,

then
* a,s. ~ - a,s
4 L ] -‘l
(2.1) b y  and Xy A
n n
Proof:
Let
¢ (y+b)-9¢ (y->b)
* n * n
h (y) = Fn Fn
n 2b
n
-1 ATk
i F (y+ bn) - Fn (y - bn) [6-15 "
2b g n y
where
F*-l . 21 «1
- <
R W SF B ) SF (y+b),
I-eqs
(2.2) y-bnisn(y)iy+bn.

Clearly,



35

(2.3) B, (y) 4%y

uniformly in y . Let X,, ..., X be the order statistics from F . Then,
1 n

s 4
F(X,) = 5 where S = ] Y, and Y
n+l =1

variables and have exponential distribution with mean 1/(n + 1) ,

Y are independent random

1* 0 el

-1 -1

* *
L R I U ) I Y

hen F 7 F
when Fn n ©

*
where v, = 0 when Fn R and v s:p |w1+1,n - wi,nl
By (2.Al), in the latter case, v 838 o .
S S
x1 w1 o1 [n(y+d )] .yf [nGy-b )]
F (y+bn) ~-F =-b)sF\—g—)-F \—F5— +0(wn)
n+l n+l
-5
Stnty+b )1~ Stny-b )1
B S -1 * o(wn)
n+l £(F Yn(y))
where
Sta(y-b )1 Stnty+b )]
. = Yn()') S
ntl n+l

By proof along the lines of Venter [18], it can be shown that
(2.4) Yn(y) 8.y uniformly in y
and

*ntr )]~ Pinty-b ],
an

(2.5) i uniformly in vy .
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By (2.A2), w.p.l. 1 n,6 ? for all n2n,, d an integer kn satisfying

*
nen , define X, " wkn’“ and Y Fn(xo) -

1
s -s —+ 0(v) )
h_(y) [ (n(y+db )] [n(y-b ) ]]f(F lyn(y)) n 8[0 len(yﬂ

h () [ 1 v o) g[c-lsn(yo)]
Y, (v))

s[n(yo'*bn)l B s[n(yo-bn)]]f(F-l

h ) Clate)] " CIn-b)l (N 60)  £(Fs o))

"0 Stay #0017 Sniy b)) (N ) £(5 s (v))

(2.6)

r(F-IB (v))
n’o
e 0(wn) .
r(F8 ()
Choose , 3 y < F(xo - 36) or y _>_.F(xo + 36) . From (2.3), w.p.l.
K| n, 20, independent of y 3 for all n 20, Bn(y) < F(xo - 25)

or Bn(y) > F(xo + 26) . Hence for all n > n,

-1, ]
:_[F BnyoJ < Ol2(‘5) o 1 .
x_I}’.-lsny] - al(G) a(8)

2.7)

From (2.3), (2.4), (2.5) and uniform continuity of f(x) ((2.A3)), w.p.l.

q n, >0, 1independent of y » for all n2>n,

S(atyre )1 ~ S[n(y-bn)lJ
-1 -1
2b . f(F Yn(yo)) . f(F Bn(y))

rs[n(yo+bn)] - S[n(yo-bn)]J f(r’lsn(yo)) f(F‘lsn(yo))

(2.8) < a(6)

2b
L n

and, hence, from (2.6) - (2.8),

- * -
Imk o xol < § and for which IFn(wkn.n) - yol <¢ for some € >0 . For
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(2.9) < a(s) + O(Wn) .

*
It v 0, i.e., F # F o»wep.l. 3 ny 2 n, independent of y for

all n> o,

a(s) + O(Wn) <1

and from (2.9)

h_(y)
—t_l-__ < 1 3
hn(yo)

i (; )
- n\’b o - S
=> —— b
But ybn maximizes hn(y) > hn(y°) > 1. Hence F(xo 35) < ybn < F(xo + 36)

- ~

y By Lemma II.2,1 Xy 838- ;o ]
n

8_‘8.

w.p.l. Since §&§ 1is arbitrary, Yy oL
n

3. Asynptotic Distributions

Assumptions:

(3.A1) Conditions (2.A2) and (2.A3) hold.

(3.A2) In the neighborhood of ;o

1) r(x) 1s thrice cifferentiable, and

(14) f'(x)/f3(x) is bounded.
Note that min r(x) = r(;co) < o jimplies
(111) g6 lFx)] > 0 .

(3.A3) b_=An " ;A>0,1/8 <ac<l/5.

( - 1-2u)
3
(3.A6) wi+1’n - wi’n = Op ﬂ. .



- -

L minimizes r(x) => r'(xo) n Q0 . As in Section V.3, define

o
i B ;o + bn Mg = -o - bn
£, - F-l(nl) P &y = F'l(nz)
a, = [on,] ; a, = [nn,]
b, = b, =

1 [n(n1+6)]; 2 [n(n2+6)]-

where {Yi}“+l are independent and identically distributed, having the

i=1
exponential distributfon with mean 1/(n + 1) .

Proof:

From Lemmas V.3.2 and V.3.3
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Gaz 2) °rn(inl') - °rn(::%) - rél) é“-l (Y5+1 i) r<§1> - 23:::5(51) e?
+ op(n'l’é)
(3.3) °rn(fn£) - °1-'n(a72) = réz) :i;: (-Yj+l *a . 1) + r(gz) } 23:;:%(51) 62
+ op(n';’é) :
From Taylor Series expansion
. -1 r(x,) b2 + op(bi) :

rz(;co)fz(;o) n

r'[lr'l(;.o +b J r(;co)

The lemma is immediate from the above relatioms, H

Reduction to a Problem in Stochastic Processes

Let & = vt and wn(:) = (

(3.5 z () =u (o) - (&

bl—l bz-l
1 1
Let. V,(6) = [ (Y_1+1 B m) + (-Yj+1 iy 1) g
s=a 1ma,

ybnA - yo) maximizes

v (6) wil
2 — - zf(x) 6% +0 (662 + 6% ) .
t(xo) T (xc)f ( P

2v
n

) Vn(d) . Then t = v-lé maximizes

z\;)"‘ (%) 5 Mol (512, ey

= ~ voeT + 0 (8
p




A0

Choose v such that the coefficient of (-tz) in (3.5) is one, i.e.,

o
n r(xo)fz(xo)
Therefore
i i o ls2e
(3.6) v = 21,3A-2/3f4/3(x°)r2/3<xo)r"-2/3(xo)n )

( _1-2a )
Therefore, 6 = 0p n : t/ . Hence t = A‘l(yb - yo) maximizes

_ 8a-1
(3.7) Zn(t) = wn(c) - tz + op(n c) :

Lemma 3.2:

Wn(t) is asymptotically normal with mean 0 and variance min(|t],2B) ,

for all t where

(3.8) B= lim —2 .,
Vv

n-i(!)

Proof:

Note that Hn(O) = 0 and E{wn(t)] =~ 0 for all t . By a straight-

forward but tedious calculation (Cf. Venter [18]), it can be shown that

& * *
(3.9) Cov {wn(c) (e )} + % {min(|t|,2B> + min(jt - t |) - mia(|t - t |,2B): .

*
In particular, for t =t |,
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(3.10) Var [Wn(t)] » uin(|t!,28).

Since all the conditions of La~unov Theorem, p. 203, Figz [}, are satisfied,

the lemma follows. ||

Remark 3.1:

The distribution of Wn(t‘ tenes o a Caussian process with mean O
and variance- ariance functisn given by (3.9) and hetuce, b 3n application
of Slutsky's Theorem,

zu(t) ) 2't) = W(t) - tz .

a -

The Asymptotic Distribution o Yy and Xy
n n

e

Theorem 3.1:

The random variables

-1/" g
(3.11) - vo)
(3.12) - io)
\ “n

are asymptotically distribute: as the variabie ¢t which maximizes

Z(t) = W(t) - t2 vhere

(1) for a =1/5 , W(t) is a Gaussian process with W(0) = 0 ,

E(W(t)] = 0 for a:i t and covariance function given by (3.9); and
(11) for 1/8 < a <1/5, W(t) 1is a two-sided Wiener-Lévy process

with W(0) = 0 , e[W(t)] = 0 for all t and variance 1 per

unit t .
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A= v/f(xo; with v 1s defined in (3.6) and Qn has to satisfy (3.A4).

E;fw1+1,n) 3 Fn(wi,n)

'i+l Th T v

E 0 for

()
w1+l,n - mi.n &3 np n . Also, for a < 1/5 , B = « and hence wn(t)

tends to a two-sided Wio.e' process for 1/8 <u <1/5 . t = v_l(yb = yo)
n

maximizes Zr(:) aud sin: 2 Zn(t) + 2(t) , (3.11) is immediate.
s

Proof of (3.12):

n \
I R T o I A 110
-"."‘b xb b [+
\"'n n n
where o 1lies betveen x, and x . Therefore (x - X )f(c) =
2] o b o
n n
e i = — ; * ays. 0 _ _ a,s.
(ybn :0) + Op(n 7 . by Kolmogorov's Theorem, xbn Prxgo= g P

and the result follows {rom Slutsky's Theorem. ||

Remark 3.2:

For the special casc of estimation of the mode of a density, the above
theorem ri¢duces to Thecrems3a and 3b of Venter [18]. It is interesting to
note that in all the fcur estimators discussed, for the fixed (narrow)

window, the grid is required to be narrow (wide).

4, Asymptotic Frficicu:y of Narrow Window Estimators

~

In this secticn, we .btaln the asymptotic efficiency of X relative to

A * .
Let Zr(t) and zi(t) be two consistent estimators of 2Z(t) such that
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(4.1) a'(z_(t) - 2(0)) 3B (0
and
4.2) a'(z () - 2(6)) B, (0

H, depend, in general, on 2Z(t) .

for some vy > 0 , where Hl » Hy

Definition:

Kolmogorov-Smirnov distance

(4.3) dlf, (x),H,(x)] = sup [B (x) - H,(0)] .

—-0<Y <o

Followi ; Hodges and Lehmann [ 9], we define the asymptotic efficiency

- *
of Zn(t) and Zn(t) as follows:

Definition:

. *
The asymptotic efficiency of Zn(t) relative to Zn(t) is

(4.4) e(z_(t),2"(2)) = o2
' n ’“n o
where oo satisfies

(4.5) inf d[Hl(x),Hz(x/c)] = d[Hl(x),HZ(x/co)] .
a

In particular, if Hl(x) - H(olx) and Hz(x) = H(ozx) , then it easily

follows that

I

- a o
(4.6) e(z_(v),z_(t) = -

-



G4

- *
1f e(Zn(t),Zn(t)) = 1 , the two estimators are said to be asymptotically

equivalent, From Theorems IV.3.1 and Theorem 3.1, by definition (4.6),

. \4/3
- - Cf(x )
(4.7) e(x Xy ) = Ao .
4 °n
Remark 4.1:

If we choose A = Cf(xo) + Op(n-Y) for some y > 0 , it can be easily
seen that the two estimators are asymptotically equivalent for

y>252 and 1/8 <a /5.
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CHAPTER VII

OTHER ESTIMATORS AND COMPUTATIONAL ASPECTS

l. Other Estimators

1.1 The Naive Estimator

* * *
fn(x) Fn(x + an) - Fn(x - an)

g[G-lF:(x)] Zan°g I:G“]'F:‘1 (x)]

(1.1) ‘én(x) -

is called the natve window estimator of r(x) and Xn minimizing ¥n(x)

estimates the change point X, -
Under the conditions of Theorem IV.2.1, it follows from that theorem
that %n is a strongly consistent estimator of X, Furthermore, if the

assumptions in Section IV.3 are satisfied, it can be shown, by a proof

similar to the proof of Theorem IV.3.1, that %n and X, have the same
n

asymptotic distribution, i.e., they are asymptotically equivalent.

1.2 A Family of Estimators of the Generalized Failure Rate Function
and the Change Point

To estimate the unknown generalized failure rate function r(x) ,

consider statistics of the form:

- A X - u
(1.2) ) = o I K(———-—an )dQF*(u)
-0 n

and

1 1 1 y-u 1
(1.3) . -5 K( 5 )d¢ L(u) , at x = F (y)



Lo

where K(x) 1is a certain density function and a bn tend to 0 as
n+«, When G 1is the uniform distribution on [0,1] , (1.2) reduces to
the statistic considered by Nadaraya [11], Parzen [12] and others for

estimating a density function and mode. Note that when

b lul <1
(1.4) K(u) =

0 elsewhere

we get the estimators considered in Chapters IV and VI. One can now define
estimators of the change point with respect to the smoothing function K .
It would seem possible to obtain the analogue of the results of Nadaraya

and Parzen to this more general case.

1.3 Estimation of the U-Shaped Generalized Failure Rate Function

and the Change Point

Suppose we know, apriori, that r(x) 1is U-shaped. Using the approach
of Barlow and van Zwet [1,2], estimators are suggested for the change point.

In this subsection, we assume the case of complete sample; i.e., Fn = Fn 3

Assume initially that W n X5 Yy n for some k . Let r be
1 ’

an initial or basic estimator for r and xn minimize rn . Consider the

following regression of T, with respect the discrete measure Mo
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[~ t-1
Z rn(wj,n)un{wj n}
sup inf sz 1 1
k+1>t>i+] s<i & 0
demlsst T
j=s n j,n

< <
X%

1-0’1, ee ey k-l

(1.5)

}’n(x,k) -

12 rn(wj,n)un{wj,n}
inf sup 2

t>1+1 k<s<i ti

1

un{wj n}

3=s

i =kl §a

Note that ¥n(x,k) is a step function and decreases till Y n and
’
increases after Wl on The following criteria, for example, may be
9

* %
chosen to obtain the optimum value of k , viz. k = k (n) .
* *
(1) Choose k = k such that k minimizes

sup |¥n(x,k) - rn(x)|
x

* *
(11) Choose k = k such that k minimizes

y|2

T v
Z I (wi,n’k) - rn(wi,n :
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®
Note that k is, in general. not unique. While one could modify the
#
definition to make k wunique, this will not be necessary, since these
intervals typically all lie within a range which is small compared to the

variability of k. + Then

w +w a
(1.6) :. o-Sat __ktla estimates x .
n 2 ()

Barlow and van Zwet suggest the following basic estimators Tn and

discrete measures u_ @

<X < W

”1,n i+1l,n

€ = hloy o ¥ o a)
(1.7)

uu{ui'n} - (‘"ux.n - ui’n).[c-ll’u(ii)] ’

Call the estimator, obtained from substituting (1.7) in (L.5), r_(x,k) .

For the case of complete sample, ”1.n = xi for all { , G assumed to be
the exponential distribution with mean 1 and k. chosen to maximize the
likelihood of the sample, ;u(x.k.) is the same as the maximum likelihood
estimator of a U-shaped failure rate function considered by Bray, Crawferd

and Proschan [&4].

t.(x) as defined in (1.7)
(1.8)

U {w, _}

n'Y%,a" “ %% 1" "

i,n

and substituting (1.8) in (1.5), we get ::(x,k) , the corresponding

"smoothed" estimator.



-1 -1
g Fn(w1+lln) SUe Fu(ui n)
rn(x) = w = i WL S X W
1+1,n - “4;n g ’
(1.9)
un{wi,n} B wi+1,n - mi,n

and rn(x,k) is obtained by substituting (1.9) in (1.5).

*

Let I = [m % | bU i . Based on the results of Barlow and van

n
k ,n k +1l,n

Zwet [2], we make the following

Conjecture:

If

(1.A1) X, is unique;

(1.A2) r 1is continuously differentiable and f" exists;

(1.A3) r'(x) <0 for x < ;o and r'(x) >0 for x » X, 5

(1.A4) rn(x) is a consistent estimator of r(x) ; and

-

(1.A5) wi+l,n - wi,n = ¢cn 0<a<l1l/3 and ¢ >0,
then
* -~
(1.10) lim P[|xn - xol # o] = 0
n>«
v x
(1.11) lim P|sup, lrn(x,k ) - rn(x)l $0]=0
N> x¢In

v 5 * ~
where rn(x,k) is equal to rn(x,k) or rn(x,k) or rn(x,k) .

Analogous to the estimator based on total time on test measure given

69

in Section 5, [2], we can define the following basic estimator and discrete

measure.:
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Fn(w1+1,n) B Fn(wijn)

Ve [Fn(wi+1,n)} - g [Fn(wi,n>]
n n

rn(x) i i,n E w1+1,n

(1.12)

“n{“i,n} = an[Fn(w1+1,n)] <] @Fn[Fn(wi’n)] . *

Thus any one of the four basic estimators suggested above may be used

to estimate r(x) and X, - Mathematical analysis of such estimators of

the change point, obtained from smoothing a basic estimator of r(x) and
based one of two criteria suggested above, seems intractable to obtain

meaningful asymptotic results. Computational results are inconclusive to
suggest that any one criterion or any one version of ¥n(x,k) is superior

to the rest.

1.4 Estimation of the Change Point - The Case of Incomplete Data

Items on test may possibly be of different ages. Further, an item
may be removed from test by one of two ways - failure or truncation. Truncation
is the action of summarily removing an item from test, Truncation times may
or may not be known,

In this case, the maximum likelihood estimator of F , when no assumptions
are made concerning the distribution, has been obtained by Kaplan and

and ¢ transformations

Meier [10]. This can be used to estimate the ¢F F

and hence the change point.

2. Computational Aspects

2.1 Recommendations

We shall restrict ourselves to the strongly consistent estimators

- ~

X, and X, o discussed in Chapters IV and VI respectively. In order to
n n




correspond to the asymptotic theory developed earlier, the windows are

required to satisfy the relations: a, = Cn ® , bn = An " , where A , C
_ 1-2a
and a are positive constants. = cn 2 , for all i and

wi+l,n - wi,n

¢ a positive constant, is a convenient choice for the grid Qn and

“ n is determined by the left end point of the support F .
’

(1) Choice of a:

The estimator ;n(x) defined in Chapter IV is asymptotically the same
as the basic estimator defined in (1.9). Barlow and van Zwet have shown
that 1f r(x) 1is twice differentiable, the mean square error of the basic
extimator is minimized for o = 1/5 (Cf. [2], p. 7). Hence a =1/5 is

recommended. For this choice of a , (xa - xo) = Op(n-lls) and
n

& - -1/5
(xb - xo) = Op(n )

n

{2) Choice of c:

By Theorems 1IV.3.1 and VI.3.1, Qn must satisfy the condition,

_ 1=2a

- ) for all i, For o =1/5, this reduces to

1/

wi+1,n - wi,n - op(n

-1/5
the condition L op(n ) for all i , which may be satisfied

in practice by choosing ¢ 1less than both A and C .

(3) Choice of A and C :

The preference of one narrow window estimator over another as well as
the "optimal" values of A and C depend on the particular distribution
function, which is of course unknown. However on the basis of Monte Carlo
simulations, some important conclusions are noteworthy for estimating the

change point of probability density and failure rate functions.
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(1)

(11)

xa was noted to be sensitivez to the choice of C for small
n

samples (up to 3000). Improper choice of C could lead to
estimates of X, and r(xo) well away from the true values.

~

* ~
In contrast to the above, Xy and rn(xb ) were seen to be
n n

very good estimators if the criterion is to minimize the maximum
error. Furthermore, they were relatively insensitive to the
choice of A . It should be noted that a check has been built
into the computer program to reduce the value of A 1if it is
found to be large. It has not been possible to include a

corresponding check for C .

~

Hence, though X, and x, are strongly consistent (under the assump-
n

n

tions in Chapters IV and VI), the estimator based on the ¢ transformation

is recommended for small samples.

2.2 Numerical Results

the

Monte Carlo simulations were conducted in the following two cases:

(1)

(11)

change point (mode) of the N(O0,1) density (Table 2.1);
change point (maximizing point) of the failure rate of a parallel
structure composed of two independent components having exponential

failure distributions with mean lifetimes % and 1 (Table 2.2).

In Tables 2.1 and 2.2, for each sample size n , values computed from

¢ transformation are given below the corresponding values from the 4

transformation. These estimates are the average of values obtained in 25

gimulations; there was no significant variation in the results when the

number of simulations was increased. Estimates were obtained in both cases

for a number of values of A and C . In case (i), A was chosen to make




73

the two estimators asymptot: cally equivalent (i.e., A = Cf(go)) . Simula-
tions were conducted in both cases for & ranging from 50 to 3000. Some
typical results are shown in the table-.

Several numerical inve:s.igations for estimating density and failure rate
functions have been conductud by Watsnn and Leadbetter [19] and [20}. They
obtained the best results, a tle tvise of estimating a failure rat. function,
from a "heuristic graphical estimator” (Cf. {19], p. 180). To obtain this
estimator, -log {1 - Fn(x)} is pletted against x and 2 smooth curve is
drawn through the points by any re.sonable method. The slope of the curve
at any point x , say ;g(x! , 2stimates ihe failure rate st that point.
Since -log [1 - Fn(x)] is infinite for x equal to the last observation,
no interpolation is possible between (n - 1l)th and nth sample points. The
change point can now be est mated by determining the point, say ;g , (not
necessarily unique) at whick ;g(x) is minimum. This estimator, by its
construction, does not come with fornulae for its mean and variance.

The computer program was also applied to actual life data on two types
of very expensive radar tubes. The data was in tha form of failure times of
19 tubes of type 1 and 25 uJbes of type 2. In each case, the change point
was also estimated graphicatly (Fizure 2.1) and the resulrs are summarized
in Tables 2.3 and 2.4.

The mumerical investig.:ions were carried out on a CDU-6400 computer
at the Computer Center, Univeisity of Calitornia, Berliclcy  The erecuticn
time for the case mentioned above was approximately 30 seconds for each
tube type.

Details of the computer program are given in the Appendix.



TABLE 2.1

ESTIMATION OF THE MODE OF THE N(0,1) DENSITY

5 2
F(x) = —l— I e—t /zdt -0 < X < ®
V2n J

. 2

r(x) = f(x) = ff: e /2 —® < X <
V20

X = 0.0 r(; ) = 0.398916
Q (o]

a=1/5 c=1/4
Number of Simulations = 25
MEAN VALUE | MEAN SQUARE MEAN VALUE | MEAN SQUARE |
;( X r (X ) r (X )
a a nl"a n\"a
n c {oF *® ERROR OF " | OF m7 | ERROR OF n
s : (" Tk .
. = 2o )]
_.n n n —_— \ n/
»
so | g.4 | =0-028814 | 0.830221E-03 0.605723 0.427688E-01 |
: 0.094659 | 0.896029E-02 0.684200 0.813866E-01 |
|
100 | 0.4 | =0-013206 | 0.174405E-03 0.552615 0.236233E-01 |
: 0.082339 | 0.677979E-02 0.592910 0.376335E~01 :
250 | 0.4 | ~0-005406 | 0.292295E-04 0.492992 0.835025E-02 ‘
2 0.097342 | 0.947540E-02 0.498336 0.988418E-02 i
1
so | 2.8 | ~0-037960 | 0.144094E-02 0.320511 0.614737E-02 ;
? 0.066669 | 0.444469E-02 0.267973 0.171463E-01
100 | 2.8 | 0:034567 | 0.119485E-02 0.341437 | 0.330387E-02 !
. 0.030586 | 0.935476E-03 0.289064 | 0.120675SE-01 i
| :
250 | 2. | ~0-015350 | 0.235616E-03 0.356965 | 0.175995E-02 i
: -0.005406 | 0.292295E-04 0.335935 |  0.396660E-02 !
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TABLE 2.2
ESTIMATION OF THE MAXIMIZING POINT OF r(x) = I—§£§%;7
+ 1 - e_x - e-2x + e-3x x>0
F(x) =
0 otherwise
-X -2x
f(x) 14+ 2 " - 3e
r(x) = 1 - F(x) = -X -2x
l+e - e
x_ = 1.443635 r(;c ) - 1.105573
o o
a =1/5 c=1/4
Number of Simulations = 25
MEAN VALUE MEAN SQUARE MEAN VALUE MEAN SQUARE
X r [(x r {x
a a, n( an) n an>
n C A OF . ERROR OF . OF /- ERROR OF /-
xb xb rn(xb ) rn(xb )
n n n
50 8.6 0.187495 0.157789E+01 0.338594 0.588256E+00
0.55 1.166128 0.770105E-01 1.261499 0.243129E-01
100 8.6 0.744460 0.488846E+00 0.668490 0.191042E+00
0.55 1.337640 0.112350E-01 1.236343 0.171007E-01
250 8.6 2.094735 0.423931E+00 0.941717 0.268488E-01
0.55 1.365555 0.609655E-02 1.196830 0.832793E-02
50 9.6 0.077742 0.186567E+01 0.214144 0.794646E+00
0.9 1.015217 0.183542E+00 1.080619 0.622694E-03
100 9.6 0.418013 0.105190E+01 0.574817 0.281701E+00
0.9 1.086833 0.127308E+00 1.099600 0.356783E-04
250 9.6 1.822950 0.143879E+00 0.848998 0.658305E-01
0.9 1.166688 0.767000E-01 1.109128 0.126385E-04

+Such a distribution describes the failure law of a parallel structure

composed of two independent components having exponential failure distributions
with mean lifetimes

1

* and 1 .




TABLE 2.3

RADAR TUBE ~ TYPE 1

Data
l, n=19
2. Observed Failure Times in Hours
533
827
877
1007
1271 |
2394
2741
3244
4130
4368
4744
7253
7705
9482
11813
12317
12563
14977
16713
Estimates
a =1/5 c = 1/4
C xa in Hrs. tn(xa ) xb in Hrs. rn<xb ) !
n n n n ;
)
10 527.45 0.0 0.3 4130.01 0.102284E-03 {
30 516.35 0.0 0.4 4368.08 0.111463E-03 ‘
50 505.25 0.0 0.5 4368,08 0.115497E-03 \
100 477.51 0.0 0.6 4368.08 0.132645E-03 i
500 255.53 0.0 ] 0.7 3244.04 0.134635E-03 |
1000 1826.02 0.0 | 0.8 4130.01 30.1500985-03:
1500 5576 .47 0.0 0.9 4368.08 l 0.150543E-03 E
x = 5750 Hrs.

From Figure 2.1,

r (x ) = 0.250000E-04
g\*g



TABLE 2.4

RADAR TUBE - TYPE 2

Data

l. n=25

2. Observed Failure Times in Hours

44
384
548

1172
1373
1527
1611
1614
1634
1873
2249
2892
3100
5160
5468
5531
5809
6631
7368
7511
8611
10847
10920
11546
11567

Estimates
a = 1/5 c=1/4

~ ~ ~ -~ * ~
C xa in Hrs. rn(xa ) A xb in Hrs. rn(xb )
n n n

10 38.75
30 28.24
50 70.40
100 96.66
500 810.68
1000 3625.40
1500 3880.05

3100.10 0.157882E-03
5809.10 0.150124E-03
1614.01 0.162450E-03
1614.01 0.184687E-03
3100.10 0.179432E-03
2892.08 0.183676E-03
3100.10 0.204013E-03

(e NeoNoNaNoNoNa

[eNeoNoNeNoNoNa
[eNeoNeNeNoNoNe
WO 0o~ W

. e

xg = 4000 Hrs.
From Figure 2.1,

-

'z(;s) = 0.145833E-04
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- FNlTJJ
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A. O CALCULATED POINTS
X CHANGE PDINT

TYPE 2

y ) S T T S | ) S U U W S W TR S S 1

4 L
1 2 3 4 5 6 7 8 9 10 1) 12 13 14 15

TIME, T - THOUSANDS OF MHOURS

FIGURE 2.1 - GRAPHNICAL ESTIMATION OF THE CMHANGE POINT AND
FAJLURE RATE FOR TWO TYPES OF RADAR TUBES.
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APPENDIX

COMPUTER PROGRAM

~

The following program, written in FORTRAN IV, computes X, and
n

-~

~ ~ ~ *
rn(xan) , xbn and rn(xbn) , for probability density and faillure rate

functions, under the assumption of complete data. The program comprises of

a main routine and four subroutines as follows.

Main Routine

CPOINT : Controls the over-all computation and calculates the final
results, A user has only to provide the input data specified

by this routine.

Subroutines

ORSTAT : Sorts the failure times in ascending order.
EMP : Computes the empirical distribution function.

GINVF : Computes the value of ¢F (x) at any specified point x .
n

GGINVF : Computes g[?-l(%)] for i=0,1, ..., n . These values are

necessary to calculate ¢F (x) .
n

A listing of the program is given on the following pages and, for each
routine, the listing includes comments regarding the pertinent quantities

used by that routine.



Al

J7186+7+509500005304718695. ARUNKUMAR yCHANGE POINT ESTIMATION
RUN$S99999950000,
LGO,

nn 2 YN aXaXaxa¥aXalaXaXaXaXaXaXaXa¥a¥aXa¥aXaakaNaNaNaNaRaNaNaANAN S

1000

1010

PROGRAM CPOINT (INPUT,»OUTPUT)

MAIN ROUTINE - PROCESSES THE DATA AND OBTAINS TwO
ESTIMATES OF THE CHANGE POINT AND THE VALUE OF THE
GENERALIZED FAILURE RATE FUNCTION AT THE CHANGE POINT.

INPUT REQUIRED BY THE PROGRAM.

N = NUMBER OF FAILURE DATA,

NF - NF 1S EQUAL TO ZERO IF R(X) IS A PROBABILITY
DENSITY FUNCTION AND EQUAL TO ONE IF R(X) IS A
FAILURE RATE FUNCTION.

NM - NM IS EQUAL TO ZERO IF THE CHANGE POINT IS THE
MINIMIZING POINT AND EQUAL TO ONE IF IT IS THE
MAXIMIZING POINT,

XZERO = LEFT HAND END POINT OF THE SUPPORT OF F.

NoNFoNMs XZERO SHOULD BE INPUT ACCORDING TO FORMAT 1000,

X(I)el = 19N» ARE THE N FAILURE TIMES. THEY SHQULD RE

READ IN ACCORDING TO FORMAT 1010,

OUTPUT FROM THE PROGRAM.

X(AN) = ESTIMATE OF THE CHANGE POINT FROM THE LITTLE
PHI TRANSFORMATIONe

R(AN) = ESTIMATE OF THE GENERALIZED FAILURE RATE
FUNCTION AT THE CHANGE POINT FRUM THE LITTLE
PHI TRANSFORMATION.

X(BN) = ESTIMATE OF THE CHANGE POINT FROM THE CAPITAL
PHI TRANSFORMATION,.

R(BN) = ESTIMATE OF THE GENERALIZED FAILURE RATE

FUNCTION AT THE CHANGE POINT FROM THE CAPITAL
PHI TRANSFORMATION,

COMMON NsFNsNF yNMyGGINVOsGGINV (1000}, INsX(1000)
SPECIFY AsALPHAC - CONSTANT FOR WINDOWsCL = CONSTANT
FOR GRID.

A =2 065

ALPHA = v,e2

c = 10.0

CL = 0425

READ 1000sNoNF ¢NM»XZERO

FORMAT(4+2119F204,10)

READ 1010s(X(I)sI=1sN)

FORMAT(4F20,.8)

FN = N

CALL ORSTAT

CALL GGINVF

GRID = FN¥*x%(~-ALPHA)

AN = C®GRID

BN = A#GRID

GRID = CL*GRID



10

11
12

20

30

40
50

60

70

80
90

IST1 = 1
IST2 =1
IST3 =1
pEl 2 ~lqu
PE2 = ot Y
PE = =1,V

P = X(1)~-AN
NCOUNT = 1
WMIN = P-AN
WMAX = P3#AN
IN = IST1
CALL EMP({WMINSE])
IST1 = IN
IN = IST2

CALL EMP(WMAXsE2)

IF (PE1l «LT. E1)GO TO 11
IF (PE2 4EQe E2)GO TO 60
GO TO 12

CALL GINVF(E1lsAl)

IST2 = [N

PE1 = E1

PE2 = E2

IF (E2 oLTe 140)GO TO 20
IF (NF oEQes 1)GO TO 60
CALL GINVF(E2,A2)

OF = A2-Al

IF ENM <EQe. 1)GO TO 50
IF (NCOUNT LEQ. 1)GO TO 30
IF (OF «GEe FR1)GO TO 60
FR1 = OF

CP1L = P

GO TO 60

INDEX = 1

GO TO 110

IF (NCOUNT .EQs 1)GO TO 30
IF C(OF oLEe FR1)GO TO 60
GO 70 30

IN = IST3

CALL EMP(P,E)

IF tPE oEQ. EIGO TO 110
IST3 = IN

PE = E

MIN = FN#(E-BN)

IF (MIN)&GUsTUST0

MAX = FN#(E+BN)-1,0

IF. ¢MAX «GEe N)GO TO 110
SUM = 0.0

00 90 I = MIN,MAX

IF €1 +GT. 0)GO TO 80
SUM = SUM+GGINVU*(X(1)-XZERO)
GO TO 90

SUM = SUM+GGINVII)#(X(I+]1)=X(]))
CONTINUE

OF = SUM

IF (NM .EQs 1)GO TO 120

A.3




A4
F (NCOUNT .SQ. 1)60_T0_ 100
F (INDEX +EWe 1)GO TO 100
IF (OF «LEe FR2)GDO TO 110
100 FR2 = OF
cP2 = P
INDEX = O

110 NCOUNT = NCOUNT+1
111 IF (E «EQe 140)GO TO 130
P = P+GRID
IF (E2 +EQe 10)GO TO 60
GO 70 10
120 IF (NCOUNT LEQe 1)GO TO 100
IF (INDEX +EQe 1)JGO TO 100
IF (OF +GEe FR2)GO TO 110
GO TO 10v
130 FR1 = FR1/(2.0%AN)
IF (INDEX oEQe 1)GO TO 160
IF (FR2 «EQe O4U)GO TO 140
FR2 = (2.,0%BN)/FR?2
GO TO 15v
140 FR2 = 999999999,99999
150 PRINT 1020sNsAsCsCPLlyFR1sCP2,sFR2
1020 FORMAT(4Xs%N =%#9]493Xs%A =%9F5,293Xs#C =%#3F54193Xs
1#X(AN) =%#9E14e693X9*RIAN) =#3F14,633Xs#X(BN) =%9El4eb)
23X *R(BN) =%49E14,46)
GO TO 170
160 A = A-Q4VU5
IF (A «GTe 0.0)GO TO 1
PRINT 103UsNsAsCsCP1yFR1
1030 FORMAT(4Xs®N =Ry 493X s*A =#9F5,293Xe*¥C =#9F54193Xy
I1#X(AN) =%9E144693X9%*R(AN) =#3E144,693X
2*DECREASE A BY A SMALLER AMOUNT IN STATEMENT 160%)
170 STOP
END
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SUBROUTINE ORSTAT

SORTS THE FAILURE TIMES IN ASCENDING ORDER TO OBTAIN
ORDER STATISTICS.

COMMON NsFNoNF 9sNMsGGINVOsGGINV(1000) s IN#X(1000)
NN = N-l

IND =V .

DO 20 I = 1sNN

J = [+1

IF (X{I) «LEe X(J))GO TO 20
S = X(I)

X(l) = XtJ)

X(J)y = §

IND = 1

CONTINVE

NN = IND-1

IF (IND GEe 2)GO TO 10
RETURN

END

SUBROUTINE EMP (XXsFNX)

FNX = VALUE OF THE EMPIRICAL DISTRIBUTION FUNCTION AT
XX o

COMMON NsFNsNF sNMsGGINVOsGGINV(1000) s IN»X(1000)
DO 10 I = INsN

IF (XX oLTe X(I))GO TO 20
CONTINUE

FI = FN

GO TO 40

IF (1 «GTse 1)GO TO 30

FI = 1

FNX = 0,0

GO TO 50

FI = [-1

FNX = FI/FN

IN = FI

RETURN

END

A.5
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10
20

SUBROUTINE GINVF(YsVALUE)
VALUE = GINVERSE FUNCTION COMPUTED AT Y.

COMMON N»FNsNF sNMsGGINVO»GGINV(1000) s IN+X(1000)
IF (NF <EQe 1)GO TO 10

VALUE = Y

Go TO 20

VALUE = -ALOG(1.0-Y)

RETURN

END_

SUBROUTINE GGINVF

COMPUTES THE GGINVERSE FUNCTION.

COMMON NsFNoNFsNMs GGINVOs»GGINV(1000) s INsX(1000)

10

20

18
4J

IF (NF oEQe 1)GO TO 20
DO 10 I =1sN
GGINV(I) = 1.0

CONT INUE

GO TO 40

DO 30 I = 1leN

F=1

GGINVII) = (FN-F)/FN
CONTINUE

GGINVO = 1,0

RETURN

END
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